Perovskite solar cell

Agreement signed to commercialize perovskite solar cell technology

Dyesol awarded $0.5 million grant to pursue high efficiency, low cost solar cell

Australia-based Dyesol has been awarded a $449,000 grant from the Australian Renewable Energy Agency (ARENA) to commercialize an innovative, very high efficiency perovskite solar cell. ARENA has stated that the funding would enable Dyesol to create a roadmap setting out the steps needed to take its perovskite solar cell technology from the lab to a commercially available product. Dyesol will map out the techniques and requirements for working towards scalable manufacturing of high-quality, uniform perovskite cells that achieve efficiency, durability and stability targets. As declared, Dyesol is initially aiming for a delivery cost benchmark of US 10 cents per kWh, putting perovskite solar PV cells on par with current benchmarks achieved by silicon solar PV. This would be a considerable achievement given silicon PV’s maturity as a technology, and provides…

Renewable Energy and Power, a specialist in energy-saving technologies of LED lighting and solar cells, announced that the company signed a consulting agreement with G-Wave of San Jose, CA, to negotiate for license to a major university鈥檚 Perovskite solar cell technology.

Green Tech LeadPerovskite applicationsPerovskite Solar
Above are Agreement signed to commercialize perovskite solar cell technology web publication,Hope can help you.

Graphene as a front contact for silicon-perovskite tandem solar cells

Researchers at the Helmholtz-Zentrum Berlin (HZB) developed a process for coating perovskite layers with graphene for the first time, so that the graphene acts as a front contact. A traditional silicon absorber converts the red portion of the solar spectrum very effectively into electrical energy, whereas the blue portions are partially lost as heat. To reduce this loss, the silicon cell can be combined with an additional solar cell that primarily converts the blue portions and a particularly effective complement to conventional silicon is perovskite. However, it is normally very difficult to provide the perovskite layer with a transparent front contact. While sputter deposition of indium tin oxide (ITO) is common practice for inorganic silicon solar cells, this technique destroys the organic components of a perovskite cell. The HZB scientists…

Back to top button